US 2002/0059293 Al

[0101] Referring now to FIG. 2, the object inspector 30 is
shown in more detail. The object inspector 30 provides two
columns, an attribute name column 100 and a property
column 110. The object being inspected in FIG. 2 has
properties 112, 114, 116, 118, 120, 122, 124 and 126.
Particularly, properties 114, 116, 118, 120, 124 and 126 are
static constants. However, properties 112 and 122 are
dynamic and are evaluated at run time. Due to the dynamic
properties 112 and 122, to create a data driven application,
the user only needs to enter the dynamic properties and code
may be automatically generated. Thus, the data binding of
the dynamic properties 112 and 122 is seamlessly integrated
into the property sheet 30.

[0102] The Object Inspector window 30 is a dockable
control bar which displays an object’s properties and events.
The Object Inspector may be resized horizontally when
docked and both vertically and horizontally when floating.
The window may dock to the left or right of the world
workspace when its location overlaps the docking site while
being dragged. The Object Inspector 30 is displayed when a
scene editor or data element editor window is active in
design mode and displays a drop-down combobox contain-
ing a list of all objects within scope of the editor. A “dot”
notation is used to denote compound objects. For example,
“ScatterChartl.DataElement1” denotes that DataElementl
is an object owned by ScatterChart1.

[0103] Beneath the object selection combobox is a tabbed
sheet displaying either the properties or the events for an
object. When the properties tab is selected, a 2-column entry
form is displayed for setting the values of the selected
object’s properties. The left column is a read-only column
that displays the name of the property, while the right
column is a read/write column that displays the property’s
value. Values entered in the right column may be constants
or may be calculated values containing functions of param-
eters or column names from a data source. When a property
value is of an enumerated type (a value that can only be set
to a finite number of values), a drop-down combobox may
be displayed listing the legal values for the property. Enu-
merated types include but are not limited to the following:

[0104] Font name (e.g., “Arial”, “Courier”)

[0105] Color (e.g., Red, Blue)

[0106] Text alignment (e.g., Left, Right)

[0107] Text anchor points (e.g., LowerLeft, Upper-
Right)

[0108] Boolean values (e.g., True or False)
[0109] Line style (e.g., Solid, Dash)
[0110] Fill pattern (e.g., Solid, Horizontal)

[0111] When a property is a date or time, a calendar
control may be displayed beneath the property value when
the field is active.

[0112] Form and data element objects provide control over
the values of query parameters through a QueryParameters
object listed in the Object Inspector. The QueryParameters
object is a child object of the form or data element and
contains a property for each query parameter. If the query is
not parameterized, the QueryParameters object is not dis-

May 16, 2002

played in the Object Inspector. The values contained by the
object are used to set the query’s properties at runtime before
the query is executed.

[0113] FIG. 3 shows a property object model of an
abstract base class VcPropertyBag 200. VcPropertyBag 200
acts as a container for a set of properties that are specific to
one or more derived classes. VcPropertyBag 200 provides
an interface for accessing and manipulating properties and
their values. It also provides a pure virtual method for
obtaining type information on the derived object’s set of
properties.

[0114] Derived from VcPropertyBag 200 are an abstract
base class VcScene 202 and an abstract base class VcDraw-
ingNode 204. VcScene 202 is the class for a scene and
inherits properties from VcPropertyBag 200. VcDrawing-
Node 204 is an abstract base class for all graphical objects
displayed in a scene and also inherits properties from
VcPropertyBag 200. VeDrawingNode 204 provides a set of
pure virtual methods for manipulating properties in support
of movement, scaling, and other standard editing operations.
Derived classes are responsible for mapping the editing
operations to the appropriate properties.

[0115] VcPropertyBag 200 also has a set of properties
m_properties of class VcProperty 210, which contains all
information about a specific object property, including name
and enumerated type information, m_expectedType. m_ex-
pectedType describes the data type of the resulting property
value (e.g., boolean, numeric, string, etc.), stores the path to
access the object m_path, and manages a design-time value
m_designvalue and a run-time value m_runtimevalue for the
property. The design-time always evaluates to a constant so
that the container object may be displayed in isolation
(without links to data or parameters). When the run-time
value is also constant, the two values are set to the same
value.

[0116] VcProperty 210 has an m_name property which
belongs to CString 212, a standard string class to provide
storage for the property’s name. The VcProperty object 210
also has a m_path property of a class called VcPropertyPath
214, which stores an identifier for a property that is unique
within the VcPropertyBag’s set of properties, and which
provides a pointer, m next, to a linked list of VcPropertyPath
to support aggregated property bags.

[0117] VcProperty 210 also has a property m_design value
which belongs to a class called VcPropertyValue 216.
VcPropertyValue 216 stores a function representing the
design-time value for the property (VcFunction 220) and
stores the expression entered by the user so that case-
sensitivity, spacing, and other particulars may be displayed
back to the user as entered (CString 218).

[0118] VcFunction 220 is an abstract base class for a
parsed expression element and the function is the root
element for an expression tree that may be evaluated by
supplying a context object. CString 218 is a standard string
class which provides storage for the expression entered by
the user.

[0119] Finally, VcProperty object 210 also has a m_runt-
ime value property which belongs to an abstract base class
VcPropertyValue 222. VcPropertyValue 222 stores a func-
tion representing the run-time value for the property and



